Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986848

RESUMO

Artificial intelligence (AI) has been used in many areas of medicine, and recently large language models (LLMs) have shown potential utility for clinical applications. However, since we do not know if the use of LLMs can accelerate the pace of genetic discovery, we used data generated from mouse genetic models to investigate this possibility. We examined whether a recently developed specialized LLM (Med-PaLM 2) could analyze sets of candidate genes generated from analysis of murine models of biomedical traits. In response to free-text input, Med-PaLM 2 correctly identified the murine genes that contained experimentally verified causative genetic factors for six biomedical traits, which included susceptibility to diabetes and cataracts. Med-PaLM 2 was also able to analyze a list of genes with high impact alleles, which were identified by comparative analysis of murine genomic sequence data, and it identified a causative murine genetic factor for spontaneous hearing loss. Based upon this Med-PaLM 2 finding, a novel bigenic model for susceptibility to spontaneous hearing loss was developed. These results demonstrate Med-PaLM 2 can analyze gene-phenotype relationships and generate novel hypotheses, which can facilitate genetic discovery.

2.
Commun Biol ; 6(1): 1053, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853211

RESUMO

Genetic variation accounts for much of the risk for developing a substance use disorder, but the underlying genetic factors and their genetic effector mechanisms are mostly unknown. Inbred mouse strains exhibit substantial and heritable differences in the extent of voluntary cocaine self-administration. Computational genetic analysis of cocaine self-administration data obtained from twenty-one inbred strains identified Nav1, a member of the neuron navigator family that regulates dendrite formation and axonal guidance, as a candidate gene. To test this genetic hypothesis, we generated and characterized Nav1 knockout mice. Consistent with the genetic prediction, Nav1 knockout mice exhibited increased voluntary cocaine intake and had increased motivation for cocaine consumption. Immunohistochemistry, electrophysiology, and transcriptomic studies were performed as a starting point for investigating the mechanism for the Nav1 knockout effect. Nav1 knockout mice had a reduced inhibitory synapse density in their cortex, increased excitatory synaptic transmission in their cortex and hippocampus, and increased excitatory neurons in a deep cortical layer. Collectively, our results indicate that Nav1 regulates the response to cocaine, and we identified Nav1 knockout induced changes in the excitatory and inhibitory synaptic balance in the cortex and hippocampus that could contribute to this effect.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Transmissão Sináptica , Neurônios , Camundongos Knockout , Hipocampo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...